Precondit ioning indefinite systems arising from mixed finite element discretization of second-order elliptic problems

نویسندگان

  • Richard E. Ewing
  • Raytcho D. Lazarov
  • Peng Lu
  • Panayot S. Vassilevski
چکیده

We discuss certain preconditioning techniques for solving indefinite linear systems of equations arising from mixed finite element discretizations of elliptic equations of second order. The techniques are based on various approximations of the mass matrix, say, by simply lumping it to be diagonal or by constructing a diagonal matrix assembled of properly scaled lumped element mass matrices. We outline two possible alternatives for preconditioning. One can precondition the original (indefinite) system by some indefinite matrix and hence use either a stationary iterative method or a generalized conjugate gradient type method. Alternatively as in the particular case of rectangular Raviart-Thomas elements, which we consider, one can perform iterations in a subspace, eliminating the velocity unknowns and then considering the corresponding reduced system which is elliptic. So we can use the ordinary preconditioned conjugate gradient method and any known preconditioner (of optimal order, for example, like the multigrid method) for the corresponding finite element discretization of the elliptic problem. Numerical experiments for some of the proposed iterative methods are presented. K e y w o r d s : indefinite system, preconditioning, iterations in subspace, conjugate gradients, mixed finite elements, second order elliptic problems. S u b j e c t Classif icat ions: AMS(MOS) 65F10, 65N20, 65N30. * On leave from Center for Inforlnatics and Computer Technology, Bulgarian Academy of Sciences, G. Bontchev str., bl. 25-A, 1113 Sofia, Bulgaria

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error analysis of nonconforming and mixed FEMs for second-order linear non-selfadjoint and indefinite elliptic problems

The state-of-the art proof of a global inf-sup condition on mixed finite element schemes does not allow for an analysis of truly indefinite, second-order linear elliptic PDEs. This paper, therefore, first analyses a nonconforming finite element discretization which converges owing to some a priori L2 error estimates even for reduced regularity on non-convex polygonal domains. An equivalence res...

متن کامل

Analysis of a Multigrid Algorithm for Time Harmonic Maxwell Equations

This paper considers a multigrid algorithm suitable for efficient solution of indefinite linear systems arising from finite element discretization of time harmonic Maxwell equations. In particular, a “backslash” multigrid cycle is proven to converge at rates independent of refinement level if certain indefinite block smoothers are used. The method of analysis involves comparing the multigrid er...

متن کامل

UN CO RR EC TE D PR O O F 1 On Block Preconditioners for Generalized Saddle 2 Point Problems

We assume that A is n×n and C is an m×m matrix. Many such systems arise from 9 the discretization of (systems of) partial differential equations. For example, Stokes 10 equations discretized with stable finite elements or a mixed finite element method 11 for second order elliptic PDEs lead to a positive definite matrix A and to C = 0, so 12 that (1) has a genuine saddle point structure. Certain...

متن کامل

Robust Preconditioned Iterative So- lution Methods for Large-scale Non- symmetric Problems

We study robust, preconditioned, iterative solution methods for largescale linear systems of equations, arising from different applications in geophysics and geotechnics. The first type of linear systems studied here, which are dense, arise from a boundary element type of discretization of crack propagation in brittle material. Numerical experiment show that simple algebraic preconditioning str...

متن کامل

A FETI Method for a Class of Indefinite or Complex Second- or Fourth-Order Problems

The FETI-DP domain decomposition method is extended to address the iterative solution of a class of indefinite problems of the form (K−σM)x = b, and a class of complex problems of the form (K − σM + iσD)x = b, where K, M, and D are three real symmetric positive semi-definite matrices arising from the finite element discretization of either second-order elastodynamic problems or fourth-order pla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006